Probing the Structure, Pseudorotation, and Radial Vibrations of Cyclopentane by Femtosecond Rotational Raman Coherence Spectroscopy.

نویسندگان

  • Philipp Kowalewski
  • Hans-Martin Frey
  • Daniel Infanger
  • Samuel Leutwyler
چکیده

Femtosecond time-resolved Raman rotational coherence spectroscopy (RCS) is employed to determine accurate rotational, vibration–rotation coupling constants, and centrifugal distortion constants of cyclopentane (C5H10). Its lowest-frequency vibration is a pseudorotating ring deformation that interconverts 10 permutationally distinct but energetically degenerate "twist" minima interspersed by 10 "bent" conformers. While the individual twist and bent structures are polar asymmetric tops, the pseudorotation is fast on the time scale of external rotation, rendering cyclopentane a fluxionally nonpolar symmetric top molecule. The pseudorotational level pattern corresponds to a one-dimensional internal rotor with a pseudorotation constant Bps ≈ 2.8 cm(-1). The pseudorotational levels are significantly populated up to l = ± 13 at 298 K; <10% of the molecules are in the l = 0 level. The next-higher vibration is the “radial” ν23 ring deformation mode at 273 cm–1, which is far above the pseudorotational fundamental. Femtosecond Raman RCS measurements were performed in a gas cell at T = 293 K and in a pulsed supersonic jet at T ≈ 90 K. The jet cooling reduces the pseudorotational distribution to l < ±8 and eliminates the population of ν23, allowing one to determine the rotational constant as A0 = B0 = 6484.930(11) MHz. This value is ∼300 times more precise than the previous value. The fit of the RCS transients reveals that the rotation–pseudorotation coupling constant αe,psB = −0.00070(1) MHz is diminutive, implying that excitation of the pseudorotation has virtually no effect on the B0 rotational constant of cyclopentane. The smallness of αe,psB can be realized when comparing to the vibration–rotation coupling constant of the ν23 vibration, αe,23B = -9.547(1) MHz, which is about 104 times larger.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotational constants and structure of para-difluorobenzene determined by femtosecond Raman coherence spectroscopy: A new transient type.

Femtosecond Raman rotational coherence spectroscopy (RCS) detected by degenerate four-wave mixing is a background-free method that allows to determine accurate gas-phase rotational constants of non-polar molecules. Raman RCS has so far mostly been applied to the regular coherence patterns of symmetric-top molecules, while its application to nonpolar asymmetric tops has been hampered by the larg...

متن کامل

Pseudorotation in pyrrolidine: rotational coherence spectroscopy and ab initio calculations of a large amplitude intramolecular motion.

Pseudorotation in the pyrrolidine molecule was studied by means of femtosecond degenerate four-wave mixing spectroscopy both in the gas cell at room temperature and under supersonic expansion. The experimental observations were reproduced by a fitted simulation based on a one-dimensional model for pseudorotation. Of the two conformers, axial and equatorial, the latter was found to be stabilized...

متن کامل

Chirality Assignment of Micelle-Suspended Single-Walled Carbon Nanotubes Using Coherent Phonon Oscillations

We report on a new high-resolution optical spectroscopy, coherent phonon measurement, for determining the chiral index of carbon nanotubes. Using femtosecond pump-probe spectroscopy, we demonstrate the real-time observation of lattice vibrations in individualized single-walled carbon nanotubes in an aqueous surfactant solution. Almost all available radial breathing modes in the Fourier transfor...

متن کامل

Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N(2) thermometry.

Time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy using picosecond-duration laser pulses is investigated for gas thermometry. The use of picosecond laser pulses significantly reduces background caused by scattering of the probe beam, and delayed probing of the Raman coherence enables elimination of interference from nonresonant four-wave mixing processes. Temperatures inferr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 119 45  شماره 

صفحات  -

تاریخ انتشار 2015